Transport properties of individual C{sub 60}-molecules

Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-12, Vol.139 (23)
Hauptverfasser: Géranton, G., Seiler, C., Evers, F., Center for Functional Nanostructures, Karlsruhe Institute of Technology, Campus South, D-76131 Karlsruhe, Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, Campus South, D-76128 Karlsruhe, Bagrets, A., Steinbuch Center for Supercomputing, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Venkataraman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical and thermal transport properties of C{sub 60} molecules are investigated with density-functional-theory based calculations. These calculations suggest that the optimum contact geometry for an electrode terminated with a single-Au atom is through binding to one or two C-atoms of C{sub 60} with a tendency to promote the  sp{sup 2}-hybridization into an  sp{sup 3}-type one. Transport in these junctions is primarily through an unoccupied molecular orbital that is partly hybridized with the Au, which results in splitting the degeneracy of the lowest unoccupied molecular orbital triplet. The transmission through these junctions, however, cannot be modeled by a single Lorentzian resonance, as our results show evidence of quantum interference between an occupied and an unoccupied orbital. The interference results in a suppression of conductance around the Fermi energy. Our numerical findings are readily analyzed analytically within a simple two-level model.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4840535