Simulation of polyethylene glycol and calcium-mediated membrane fusion
We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca(2+) by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed mem...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-03, Vol.140 (12), p.124905-124905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca(2+) by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca(2+)-lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca(2+) and PEG on membrane fusion. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4869176 |