Remarks on Hamiltonian structures in G{sub 2}-geometry

In this article, we treat G{sub 2}-geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G{sub 2}-structure; in particular, we discuss existence and make a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2013-12, Vol.54 (12)
Hauptverfasser: Cho, Hyunjoo, Salur, Sema, Todd, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we treat G{sub 2}-geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G{sub 2}-structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G{sub 2}-structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4834055