Ionization photophysics and spectroscopy of dicyanoacetylene

Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8-25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-11, Vol.139 (18), p.184304-184304
Hauptverfasser: Leach, Sydney, Schwell, Martin, Garcia, Gustavo A, Bénilan, Yves, Fray, Nicolas, Gazeau, Marie-Claire, Gaie-Levrel, François, Champion, Norbert, Guillemin, Jean-Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8-25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A(2)Πg, B(2)Σg(+) states as well as the C(2)Σu(+) and D(2)Πu states of the cation. Some of the structured autoionization features observed in the 12.4-15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D(2)Πu state of C4N2(+). The appearance energies of the fragment ions C4N(+), C3N(+), C4(+), C2N(+), and C2(+) were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4826467