Adjoint design sensitivity analysis of reduced atomic systems using generalized Langevin equation for lattice structures

An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-05, Vol.240, p.1-19
Hauptverfasser: Kim, Min-Geun, Jang, Hong-Lae, Cho, Seonho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.01.020