Spatio-temporal evolution of the H → L back transition

Since ITER will operate close to threshold and with limited control, the H → L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model [Miki et al., Phys. Plasmas 19, 092306 (2012)], we investigate ELM-free H → L back transition dynamics in ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2013-06, Vol.20 (6)
Hauptverfasser: Miki, K., Diamond, P. H., Schmitz, L., McDonald, D. C., Estrada, T., Gürcan, Ö. D., Tynan, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since ITER will operate close to threshold and with limited control, the H → L back transition is a topic important for machine operations as well as physics. Using a reduced mesoscale model [Miki et al., Phys. Plasmas 19, 092306 (2012)], we investigate ELM-free H → L back transition dynamics in order to isolate transport physics effects. Model studies indicate that turbulence spreading is the key process which triggers the back transition. The transition involves a feedback loop linking turbulence and profiles. The I-phase appears during the back transition following a slow power ramp down, while fast ramp-downs reveal a single burst of zonal flow during the back transition. The I-phase nucleates at the pedestal shoulder, as this is the site of the residual turbulence in H-mode. Hysteresis in the profile gradient scale length is characterized by the Nusselt number, where Nu = χ i , turb / χ i , neo . Relative hysteresis of temperature gradient vs density gradient is sensitive to the pedestal Prandtl number, where Pr ped = D ped / χ i , neo . We expect the H-mode to be somewhat more resilient in density than in temperature.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4812555