Temporal performance indicators for an integrated pilot-scale membrane distillation-concentrated solar power/photovoltaic system
Management of concentrate streams in inland applications has uncertain long-term environmental impacts. This study investigates an intensified solar-energy capture desalination system that integrates membrane distillation (MD) with a hybrid concentrated solar power (CSP)/photovoltaic (PV) collector...
Gespeichert in:
Veröffentlicht in: | Applied energy 2023-11, Vol.349, p.121675, Article 121675 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Management of concentrate streams in inland applications has uncertain long-term environmental impacts. This study investigates an intensified solar-energy capture desalination system that integrates membrane distillation (MD) with a hybrid concentrated solar power (CSP)/photovoltaic (PV) collector to realize self-sustained zero-waste discharge for effective management of concentrate streams in inland and off-grid applications. The demonstration-scale CSP/PV system can produce up to 178 kWh of thermal energy and 4 kWh of electrical energy per day. The thermal and electrical energy from the CSP/PV system is directly supplied to the air gap MD (AGMD) pilot-scale system producing up to 288 L of distilled water per day. Experiments were performed on the hybrid AGMD-CSP/PV system to evaluate system performance under various operating conditions including AGMD and CSP flow rates, CSP system pre-heating, and AGMD vacuum pressure. Experimental results indicate that doubling the AGMD flow rate results in a 119% increase in thermal energy utilization and a 71% increase in distillate production. Compared to the winter months, operating the system in summer months when direct normal irradiance (DNI) is highest results in nearly double the distillate production (88 L in winter and 168 L in summer) and nearly three times the amount of thermal energy consumption (15 kWh in winter and 43 kWh in summer). Operating with vacuum resulted in a 34% increase in distillate production and allowing the thermal storage reservoir to preheat in the winter resulted in a 61% increase in distillate production. Overall, experimental results highlight the tradeoff between distillate production and thermal and electrical energy production and consumption under various environmental conditions and the potential for AGMD-CSP/PV to be a stand-alone desalination system.
[Display omitted]
•A pilot-scale AGMD-CSP/PV system was operated in a real-world setting for 9-months.•Thermal storage is critical when DNI and operational hours are minimal.•MD flowrates and applied vacuum pressure largely impact distillate production.•This is the first-of-its-kind study of a hybrid AGMD-CSP/PV system. |
---|---|
ISSN: | 0306-2619 |
DOI: | 10.1016/j.apenergy.2023.121675 |