Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis
A facile widely spread technique employed to produce low-cost high-yield oxide powders, combustion synthesis, was used to prepare yttrium oxyfluoride crystalline ceramic powders. The structure of the powders was analyzed by X-ray powder diffraction and Rietveld refinement. Samples heat treated at 70...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-07, Vol.114 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A facile widely spread technique employed to produce low-cost high-yield oxide powders, combustion synthesis, was used to prepare yttrium oxyfluoride crystalline ceramic powders. The structure of the powders was analyzed by X-ray powder diffraction and Rietveld refinement. Samples heat treated at 700 °C had a predominance of vernier orthorhombic Y6O5F8 phase, while samples heat treated at 800 °C crystallized in stoichiometric rhombohedral YOF phase. The samples were doped with luminescent europium trivalent ions (Eu3+) in different concentrations (1–15 wt.%) and Judd-Ofelt theory was used to probe the distortion from the inversion symmetry of the local crystal field and the degree of covalency between the rare-earth ion and the surrounding ligands. The luminescence lifetime was measured and the luminescence quantum efficiency (LQE) was estimated. We observed that Eu3+:Y6O5F8 samples presented higher LQE in spite of the larger local crystal field anisotropy found for Eu3+:YOF samples. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4816623 |