Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures
[Display omitted] ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO2 and NH4 gases were exposed. ► Properties related to gas sensors were measured and reported. Mixed micro (cubes)...
Gespeichert in:
Veröffentlicht in: | Materials research bulletin 2012-12, Vol.47 (12), p.4169-4173 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO2 and NH4 gases were exposed. ► Properties related to gas sensors were measured and reported.
Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO2) and ammonium (NH3) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO2 and NH3 gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported. |
---|---|
ISSN: | 0025-5408 1873-4227 |
DOI: | 10.1016/j.materresbull.2012.08.078 |