Preparation of magnetic photocatalyst nanoparticles—TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite—and its photocatalytic activity influenced by silica interlayer
Highlights: ► TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite acts as magnetic photocatalyst nanoparticle. ► SiO{sub 2} interlayer is used to prevent electron migration between photocatalyst and magnetic core. ► TiO{sub 2}/Mn–Zn ferrite without SiO{sub 2} interlayer shows poor magnetic and photocatalytic proper...
Gespeichert in:
Veröffentlicht in: | Materials research bulletin 2012-06, Vol.47 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights: ► TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite acts as magnetic photocatalyst nanoparticle. ► SiO{sub 2} interlayer is used to prevent electron migration between photocatalyst and magnetic core. ► TiO{sub 2}/Mn–Zn ferrite without SiO{sub 2} interlayer shows poor magnetic and photocatalytic property. -- Abstract: A magnetic photocatalyst, TiO{sub 2}/SiO{sub 2}/Mn–Zn ferrite, was prepared by stepwise synthesis involving the co-precipitation of Mn–Zn ferrite as a magnetic core, followed by a coating of silica as the interlayer, and titania as the top layer. The particle size and distribution of magnetic nanoparticles were found to depend on the addition rate of reagent and dispersing rate of reaction. The X-ray diffractometer and transmission electron microscope were used to examine the crystal structures and the morphologies of the prepared composites. Vibrating sample magnetometer was also used to reveal their superparamagnetic property. The UV–Vis spectrophotometer was employed to monitor the decomposition of methylene blue in the photocatalytic efficient study. It was found that at least a minimum thickness of the silica interlayer around 20 nm was necessary for the inhibition of electron transference initiated by TiO{sub 2} and Mn–Zn ferrite. |
---|---|
ISSN: | 0025-5408 1873-4227 |
DOI: | 10.1016/J.MATERRESBULL.2012.02.030 |