CTAB-assisted sol-gel synthesis of Li{sub 4}Ti{sub 5}O{sub 12} and its performance as anode material for Li-ion batteries
Graphical abstract: Discharge capacity versus cycle number of Li{sub 4}Ti{sub 5}O{sub 12} samples synthesized by (a) CTAB-assisted sol-gel and (b) normal sol-gel method. Highlights: {yields} CTAB-assisted sol-gel route for the synthesis of nano-size Li{sub 4}Ti{sub 5}O{sub 12}. {yields} CTAB directs...
Gespeichert in:
Veröffentlicht in: | Materials research bulletin 2011-07, Vol.46 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphical abstract: Discharge capacity versus cycle number of Li{sub 4}Ti{sub 5}O{sub 12} samples synthesized by (a) CTAB-assisted sol-gel and (b) normal sol-gel method. Highlights: {yields} CTAB-assisted sol-gel route for the synthesis of nano-size Li{sub 4}Ti{sub 5}O{sub 12}. {yields} CTAB directs the microstructure of the gels and helps to control the particle size of Li{sub 4}Ti{sub 5}O{sub 12}. {yields} Li{sub 4}Ti{sub 5}O{sub 12} exhibits promising cycling performance with initial capacity of 174 mAh g{sup -1} and sustains {approx}94% beyond 30 cycles. -- Abstract: A simple CTAB-assisted sol-gel technique for synthesizing nano-sized Li{sub 4}Ti{sub 5}O{sub 12} with promising electrochemical performance as anode material for lithium ion battery is reported. The structural and morphological properties are investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance of both samples (with and without CTAB) calcined at 800 {sup o}C is evaluated using Swagelok{sup TM} cells by galvanostatic charge/discharge cycling at room temperature. The XRD pattern for sample prepared in presence of CTAB and calcined at 800 {sup o}C shows high-purity cubic-spinel Li{sub 4}Ti{sub 5}O{sub 12} phase (JCPDS no. 26-1198). Nanosized-Li{sub 4}Ti{sub 5}O{sub 12} calcined at 800 {sup o}C in presence of CTAB exhibits promising cycling performance with initial discharge capacity of 174 mAh g{sup -1} ({approx}100% of theoretical capacity) and sustains a capacity value of 164 mAh g{sup -1} beyond 30 cycles. By contrast, the sample prepared in absence of CTAB under identical reaction conditions exhibits initial discharge capacity of 140 mAh g{sup -1} (80% of theoretical capacity) that fades to 110 mAh g{sup -1} after 30 cycles. |
---|---|
ISSN: | 0025-5408 1873-4227 |
DOI: | 10.1016/J.MATERRESBULL.2011.03.021 |