Facile preparation of carbon coated magnetic Fe{sub 3}O{sub 4} particles by a combined reduction/CVD process

Graphical abstract: Magnetic carbon coated Fe{sub 3}O{sub 4} particles are prepared by a one step combined reduction of Fe{sub 2}O{sub 3} together with a CVD process of using methane. Analyses show that the Fe{sub 2}O{sub 3} is reduced by methane to produce mainly Fe{sub 3}O{sub 4} particles coated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research bulletin 2011-05, Vol.46 (5)
Hauptverfasser: Tristao, Juliana C., Oliveira, Aline A.S., Ardisson, Jose D., Dias, Anderson, Lago, Rochel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphical abstract: Magnetic carbon coated Fe{sub 3}O{sub 4} particles are prepared by a one step combined reduction of Fe{sub 2}O{sub 3} together with a CVD process of using methane. Analyses show that the Fe{sub 2}O{sub 3} is reduced by methane to produce mainly Fe{sub 3}O{sub 4} particles coated with amorphous carbon. These materials can be separated into two fractions by simple dispersion in water and can be used as adsorbents, catalyst supports and rapid coagulation systems. Research highlights: {yields} Magnetic Fe{sub 3}O{sub 4} particles coated with a very thin layer of amorphous carbon (4 wt%). {yields} Combined reduction of Fe{sub 2}O{sub 3} with a Chemical Vapor Deposition process using methane. {yields} Nanoparticles with an average size of 100-200 nm. {yields} Uses as adsorbent, catalyst support and rapid coagulation systems. -- Abstract: In this work, we report a simple method for the preparation of magnetic carbon coated Fe{sub 3}O{sub 4} particles by a single step combined reduction of Fe{sub 2}O{sub 3} together with a Chemical Vapor Deposition process using methane. The temperature programmed reaction monitored by Moessbauer, X-ray Diffraction and Raman analyses showed that Fe{sub 2}O{sub 3} is directly reduced by methane at temperatures between 600 and 900 {sup o}C to produce mainly Fe{sub 3}O{sub 4} particles coated with up to 4 wt% of amorphous carbon. These magnetic materials can be separated into two fractions by simple dispersion in water, i.e., a settled material composed of large magnetic particles and a suspended material composed of nanoparticles with an average size of 100-200 nm as revealed by Scanning Electron Microscopy and High-resolution Transmission Electron Microscopy. Different uses for these materials, e.g., adsorbents, catalyst supports, rapid coagulation systems, are proposed.
ISSN:0025-5408
1873-4227
DOI:10.1016/J.MATERRESBULL.2011.01.008