Iron isotope evidence of an impact origin for main-group pallasites

Despite decades of work, the origin of pallasite meteorites has remained enigmatic. Long thought to be samples of the core-mantle boundary of differentiated asteroids, more recent studies have suggested a range of mechanisms for pallasite formation. These include olivine-metal mixing during a planet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemical perspectives letters 2022-09, Vol.23 (no. 23), p.6-10
Hauptverfasser: Bennett, N.R., Sio, C.K., Schauble, E., Lesher, C.E., Wimpenny, J., Shahar, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite decades of work, the origin of pallasite meteorites has remained enigmatic. Long thought to be samples of the core-mantle boundary of differentiated asteroids, more recent studies have suggested a range of mechanisms for pallasite formation. These include olivine-metal mixing during a planetesimal collision and the intrusion of over-pressured core liquids into a planetesimal mantle. Establishing if the olivine and metal that comprise pallasites were once equilibrated at high temperature remains key to discriminating between these hypotheses. We determined the iron isotope compositions of olivine and metal in eleven main-group pallasites and found, in all cases, that olivine is isotopically lighter than metal. To interpret these data, we constrained the olivine-metal equilibrium Fe isotope fractionation with ab initio calculations and high temperature experiments. These independent approaches show that olivine preferentially incorporates the heavy isotopes of iron relative to metal. Our results demonstrate that pallasitic olivine and metal never achieved isotopic equilibrium with respect to iron. This precludes extended cooling at high temperature and is best reconciled with an impact origin for the main-group pallasites.
ISSN:2410-339X
2410-3403
DOI:10.7185/geochemlet.2229