Universality of composite functions of periodic zeta functions
In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions F({zeta}(s;a)), where the function {zeta}(s;a) is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form F({zeta}(s;a{su...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2012-11, Vol.203 (11), p.1631-1646 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions F({zeta}(s;a)), where the function {zeta}(s;a) is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form F({zeta}(s;a{sub 1}),...,{zeta}(s;a{sub r})). For example, it follows from general theorems that every linear combination of derivatives of the function {zeta}(s;a) and every linear combination of the functions {zeta}(s;a{sub 1}),...,{zeta}(s;a{sub r}) are universal. Bibliography: 18 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM2012v203n11ABEH004279 |