Universality of composite functions of periodic zeta functions

In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions F({zeta}(s;a)), where the function {zeta}(s;a) is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form F({zeta}(s;a{su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2012-11, Vol.203 (11), p.1631-1646
1. Verfasser: Laurincikas, Antanas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions F({zeta}(s;a)), where the function {zeta}(s;a) is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form F({zeta}(s;a{sub 1}),...,{zeta}(s;a{sub r})). For example, it follows from general theorems that every linear combination of derivatives of the function {zeta}(s;a) and every linear combination of the functions {zeta}(s;a{sub 1}),...,{zeta}(s;a{sub r}) are universal. Bibliography: 18 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM2012v203n11ABEH004279