Analysis of spatially resolved Z-pinch spectra to investigate the nature of “bright spots”

Localized, intensely radiating regions are often observed in Z pinches. High resolution images of such areas have been recorded at least as far back as the 1970s. However, there is as yet no widely accepted consensus on the nature of these “bright spots” or how they are formed. This phenomenon has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2013-02, Vol.20 (2)
Hauptverfasser: Apruzese, J. P., Giuliani, J. L., Thornhill, J. W., Coverdale, C. A., Jones, B., Ampleford, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Localized, intensely radiating regions are often observed in Z pinches. High resolution images of such areas have been recorded at least as far back as the 1970s. However, there is as yet no widely accepted consensus on the nature of these “bright spots” or how they are formed. This phenomenon has also been referred to “hot spots” or “micropinches.” To shed further light on this issue, we have analyzed axially resolved K-shell spectra from 4 Z pinches driven by the refurbished Z generator (“ZR”) at Sandia National Laboratories, and the previous version of the Z machine (“Z”). The atomic numbers of the loads varied from 13 to 29. We find that higher spatial K-shell intensity in the Al pinch correlates with density. The K-shell intensity within a copper shot taken on ZR correlates strongly with increased electron temperature, but another, somewhat less well-diagnosed copper shot from Z shows correlation with density. The bright spots in a Ti pinch correlate with neither density nor temperature, but do correlate with the product of density and diameter (proportional to opacity). This opacity correlation is also observed in the other 3 pinches.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4792256