Deposition of (WO{sub 3}){sub 3} nanoclusters on the MgO(001) surface: A possible way to identify the charge states of the defect centers

Periodic density functional theory calculations have been performed to study the most stable structure of the (WO{sub 3}){sub 3} nanocluster deposited on the MgO(001) surface with three kinds of F{sub S} centers (F{sub S}{sup 0}, F{sub S}{sup +}, and F{sub S}{sup 2+}). Our results indicate that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-01, Vol.138 (3)
Hauptverfasser: Zhu Jia, Lin Shujuan, Wen Xingwei, Fang Zhenxing, Ding Kaining, Chen Wenkai, Li Yi, State Key Laboratory Breeding Base of Photocatalysis, Research Institute of Photocatalysis, Fuzhou, Fujian 350002, Zhang Yongfan, Huang Xin, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, Ning Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodic density functional theory calculations have been performed to study the most stable structure of the (WO{sub 3}){sub 3} nanocluster deposited on the MgO(001) surface with three kinds of F{sub S} centers (F{sub S}{sup 0}, F{sub S}{sup +}, and F{sub S}{sup 2+}). Our results indicate that the configuration of (WO{sub 3}){sub 3} cluster, including the cyclic conformation and the heights of three W atoms, and the oxidation states are sensitive to the charge state of the F{sub S} center. It is interesting that the electron-riched F{sub S}{sup 0} vacancy on the MgO(001) surface can act as a promoting site to enhance the W-W interaction and the W{sub 3}O{sub 3} cyclic conformation is maintained, while the skeleton of cluster becomes flexible when (WO{sub 3}){sub 3} is adsorbed on the electron-deficient vacancy (F{sub S}{sup +} and F{sub S}{sup 2+}). Accordingly, three F{sub S}-centers exhibit different arrangements of X-ray photoelectron spectra, the scanning tunneling microscopy images, and the vibrational spectra after depositing (WO{sub 3}){sub 3} cluster. Present results reveal that the (WO{sub 3}){sub 3} cluster may be used as a probe to identify the different F{sub S} centers on the MgO(001) surface.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4776219