Optimal width of barrier region in X/{gamma}-ray Schottky diode detectors based on CdTe and CdZnTe
The spectral distribution of quantum detection efficiency of X- and {gamma}-ray Schottky diodes based on semi-insulating CdTe or Cd{sub 0.9}Zn{sub 0.1}Te crystals is substantiated and obtained in analytical form. It is shown that the width of the space charge region (SCR) of 6-40 {mu}m at zero bias...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-02, Vol.113 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spectral distribution of quantum detection efficiency of X- and {gamma}-ray Schottky diodes based on semi-insulating CdTe or Cd{sub 0.9}Zn{sub 0.1}Te crystals is substantiated and obtained in analytical form. It is shown that the width of the space charge region (SCR) of 6-40 {mu}m at zero bias in CdTe (Cd{sub 0.9}Zn{sub 0.1}Te) Schottky diode is optimal for detecting radiation in the photon energy range above 5-10 keV. Based on the Poisson equation, the relationship between the SCR width and the composition of impurities and the degree of their compensation are investigated. It is shown that the presence of deep levels in the bandgap leads to a considerable increase in space charge density and electric field strength near the crystal surface. However, this effect contributes a small error in the determination of the SCR width using the standard formula for the Schottky diode. It is also shown that the concentration of uncompensated impurities in CdTe and Cd{sub 0.9}Zn{sub 0.1}Te crystals within the 4 Multiplication-Sign 10{sup 11}-10{sup 13} cm{sup -3} range is optimal for the detection efficiency of X- and {gamma}-rays in the photon high-energy range. The record-high values of energy resolution have been obtained in the spectra of {sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs isotopes measured using CdTe crystals with Schottky diodes because the concentration of uncompensated donors in the CdTe crystals (1-2) Multiplication-Sign 10{sup 12} cm{sup -3} falls on an interval of maximum detection efficiency. In the spectrum of {sup 57}Co isotope, the limiting energy resolution has been achieved. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4790358 |