A first principles study of the lattice stability of diamond-structure semiconductors under intense laser irradiation

Using density-functional linear-response theory, we calculated the phonon dispersion curves for the diamond structural elemental semiconductors of Ge, C and zinc-blende structure semiconductors of GaAs, InSb at different electronic temperatures. We found that the transverse-acoustic phonon frequenci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-01, Vol.113 (2)
Hauptverfasser: Feng, ShiQuan, Zhao, JianLing, Cheng, XinLu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using density-functional linear-response theory, we calculated the phonon dispersion curves for the diamond structural elemental semiconductors of Ge, C and zinc-blende structure semiconductors of GaAs, InSb at different electronic temperatures. We found that the transverse-acoustic phonon frequencies of C and Ge become imaginary as the electron temperature is elevated, which means the lattices of C and Ge become unstable under intense laser irradiation. These results are very similar with previous theoretical and experimental results for Si. For GaAs and InSb, not only can be obtained the similar results for their transverse-acoustic modes, but also their LO-TO splitting gradually decreases as the electronic temperature is increased. It means that the electronic excitation weakens the strength of the ionicity of ionic crystal under intense laser irradiation.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4772596