Dosimetric characterization of round HDR {sup 192}Ir AccuBoost applicators for breast brachytherapy
Purpose: The AccuBoost brachytherapy system applies HDR {sup 192}Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR {sup 192}Ir source, to dosimetrically characterize the round applicators using established...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2009-11, Vol.36 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: The AccuBoost brachytherapy system applies HDR {sup 192}Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR {sup 192}Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. Methods: Dosimetric measurements were performed in a polystyrene phantom, while simulations estimated dose in air, liquid water, polystyrene and ICRU 44 breast tissue. Dose distribution characterization of the 4-8 cm diameter collimators was performed using radiochromic EBT film and air ionization chambers. Results: The central axis dose falloff was steeper for the 4 cm diameter applicator in comparison to the 8 cm diameter applicator, with surface to 3 cm depth-dose ratios of 3.65 and 2.44, respectively. These ratios did not considerably change when varying the phantom composition from breast tissue to polystyrene, phantom thickness from 4 to 8 cm, or phantom radius from 8 to 15 cm. Dose distributions on the central axis were fitted to sixth-order polynomials for clinical use in a hand calculation spreadsheet (i.e., nomogram). Dose uniformity within the useful applicator apertures decreased as depth-dose increased. Conclusions: Monte Carlo benchmarking simulations of the HDR {sup 192}Ir source using the MCNP5 radiation transport code indicated agreement within 1% of the published results over the radial/angular region of interest. Changes in phantom size and radius did not cause noteworthy changes in the central axis depth-dose. Polynomial fit depth-dose curves provide a simple and accurate basis for a nomogram. |
---|---|
ISSN: | 0094-2405 2473-4209 |
DOI: | 10.1118/1.3232001 |