Simulations of laser-wakefield acceleration with external electron-bunch injection for REGAE experiments at DESY
We present particle-in-cell simulations for future laser-plasma wakefield experiments with external bunch injection at the REGAE accelerator facility at DESY, Hamburg, Germany. Two effects have been studied in detail: emittance evolution of electron bunches externally injected into a wake, and longi...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2012-12, Vol.1507 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present particle-in-cell simulations for future laser-plasma wakefield experiments with external bunch injection at the REGAE accelerator facility at DESY, Hamburg, Germany. Two effects have been studied in detail: emittance evolution of electron bunches externally injected into a wake, and longitudinal bunch compression inside the wakefield. Results show significant transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This might introduce the necessity to include beam-matching sections upstream of each plasma-accelerator section with fundamental implications on the design of staged laser wakefield accelerators. When externally injected at the zero-field crossing of the laser-driven wake, the electron bunch may undergo significant compression in longitudinal direction and be accelerated simultaneously due to the gradient in the acting force. The mechanism would allow for production of single high-energy, ultra-short (on the order of one femtosecond) bunches at REGAE. The optimal conditions for maximal bunch compression are discussed in the presented studies. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4773781 |