Application of new simulation algorithms for modeling rf diagnostics of electron clouds

Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veitzer, Seth A, Smithe, David N, Stoltz, Peter H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of technical reasons. Detailed numerical simulations are vital in order to understand experimental data, and have successfully modeled build-up. Such simulations are limited in their ability to reproduce experimental data due to the large separation of scales inherent to the problem. Namely, one must resolve both rf frequencies in the GHz range, as well as the plasma modulation frequency of tens of MHz, while running for very long simulations times, on the order of microseconds. The application of new numerical simulation techniques allow us to bridge the simulation scales in this problem and produce spectra that can be directly compared to experiments. The first method is to use a plasma dielectric model to measure plasma-induced phase shifts in the rf wave. The dielectric is modulated at a low frequency, simulating the effects of multiple bunch crossings. This allows simulations to be performed without kinetic particles representing the plasma, which both speeds up the simulations as well as reduces numerical noise from interpolation of particle charge and currents onto the computational grid. Secondly we utilize a port boundary condition model to simultaneously absorb rf at the simulation boundaries, and to launch the rf into the simulation. This method improves the accuracy of simulations by restricting rf frequencies better than adding an external (finite) current source to drive rf, and absorbing layers at the boundaries. We also explore the effects of non-uniform plasma densities on the simulated spectra.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4773730