Towards nanometer period gratings for hard x-ray phase-contrast imaging

Transmission grating-based x-ray interferometers have been developed into wide-field imaging devices that are sensitive to x-ray refraction and diffraction in the sample. While current grating designs rely on UV and x-ray lithography processes to produce periodic vertical structures, it becomes proh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wen Han, Wolfe, Doug E., Liu Chian, Xiao Xianghui, Lynch, Susanna K., Gomella, Andrew A., Bennett, Eric E., Morgan, Nicole Y., Advanced Coating Lab, Applied Research Laboratory, Penn State University, University Park, PA, Argonne National Laboratory, X-ray Science Division, Argonne, IL
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transmission grating-based x-ray interferometers have been developed into wide-field imaging devices that are sensitive to x-ray refraction and diffraction in the sample. While current grating designs rely on UV and x-ray lithography processes to produce periodic vertical structures, it becomes prohibitively difficult to make the grating periods below 1 - 2 microns due to the high aspect ratios of the structures. Since the phase-contrast sensitivity is inversely related to the grating period, we describe a new grating design for sub-micron to nanometer grating periods. In this design, multiple bi-layers of two alternating materials are deposited on a stair like substrate, and mostly on the floor surfaces of the steps only. The incident x-ray beam is parallel to the planes of the layers (side illumination). Thus, the multilayer structure on each step serves as a micro grating whose grating period is the thickness of a bi-layer. The array of micro gratings over the whole length of the stair can act as a single continuous grating, when certain continuity conditions between neighboring steps are met. Since the layer thickness can be as small as tens of nanometers, as has been demonstrated in multilayer x-ray zone plates, this design allows nanometer grating periods over large grating areas. Here we describe a prototype intensity grating of 440 nm period. We show x-ray projection images of the grating which were obtained by contact lithography.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4742269