Properties of the thermally stable Al{sub 95}Cr{sub 3.1}Fe{sub 1.1}Ti{sub 0.8} alloy prepared by cold-compression at ultra-high pressure and by hot-extrusion

An Al{sub 95}Cr{sub 3.1}Fe{sub 1.1}Ti{sub 0.8} (in at.%) alloy was made into rapidly solidified powder by melt atomization. The powder was compacted by two processes: 1) uni-axial cold compression at an ultra-high pressure of 6 GPa and 2) hot extrusion at 480 Degree-Sign C. The structures, mechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2012-04, Vol.66 (Complete)
Hauptverfasser: Vojtech, D., Michalcova, A., Prusa, F., Dam, K., Seda, P., Institute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Al{sub 95}Cr{sub 3.1}Fe{sub 1.1}Ti{sub 0.8} (in at.%) alloy was made into rapidly solidified powder by melt atomization. The powder was compacted by two processes: 1) uni-axial cold compression at an ultra-high pressure of 6 GPa and 2) hot extrusion at 480 Degree-Sign C. The structures, mechanical properties and thermal stability of both materials were compared with the commercial AlSi{sub 12}Cu{sub 1}Mg{sub 1}Ni{sub 1} (in wt.%) casting alloy, which is generally considered to be thermally stable. It was found that cold compression at ultra-high pressure created a compact and porosity-free material, which was similar to the material that was prepared with the commonly used hot extrusion method. The Vickers hardness, compressive strength and compressive yield strength of the cold-compressed alloy were 161 HV, 680 MPa and 547 MPa, respectively, which were higher than the values obtained for the hot-extruded and casting alloys. The thermal stability of the hot-extruded Al{sub 95}Cr{sub 3.1}Fe{sub 1.1}Ti{sub 0.8} alloy was excellent because its mechanical properties did not change significantly, even after 100 h of annealing at 500 Degree-Sign C. The mechanical properties and thermal stability of the investigated materials were discussed in relation to their structures and diffusivities of the alloying elements. - Highlights: Black-Right-Pointing-Pointer The Al{sub 95}Cr{sub 3.1}Fe{sub 1.1}Ti{sub 0.8} alloy was prepared by compression at an ultra-high pressure of 6 GPa. Black-Right-Pointing-Pointer The resulting material was dense and porosity-free. Black-Right-Pointing-Pointer The material had high hardness of 161 HV and a compressive strength of 680 MPa. Black-Right-Pointing-Pointer The material had excellent thermal stability at 500 Degree-Sign C.
ISSN:1044-5803
1873-4189
DOI:10.1016/J.MATCHAR.2012.02.011