DESIGN OF MIRRORS AND APODIZATION FUNCTIONS IN PHASE-INDUCED AMPLITUDE APODIZATION SYSTEMS
Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors that reshape incident light without attenuation, coupled with one or...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2012-08, Vol.201 (2), p.1-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors that reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any given pair of mirrors, or conversely mirror shapes chosen for given apodizers, to produce an arbitrary amplitude profile at the output of the system. We show how classical PIAA systems may be designed by this method and present the design of a novel four-mirror system with higher throughput than a standard two-mirror system. We also discuss the limitations due to diffraction and the design steps that may be taken to mitigate them. |
---|---|
ISSN: | 0067-0049 1538-4365 |
DOI: | 10.1088/0067-0049/201/2/25 |