Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

Consider a non-symmetric generalized diffusion X (⋅) in ℝ d determined by the differential operator . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D ([0,∞),ℝ d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2011-08, Vol.64 (1), p.101-133
1. Verfasser: Limic, Nedzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a non-symmetric generalized diffusion X (⋅) in ℝ d determined by the differential operator . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D ([0,∞),ℝ d ) to the diffusion X (⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d ≥3 can be applied to processes for which the diffusion tensor fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-011-9133-1