The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential
The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2011-07, Vol.74 (7), p.1083-1089 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system. |
---|---|
ISSN: | 1063-7788 1562-692X |
DOI: | 10.1134/S1063778811060299 |