THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER
The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2012-06, Vol.752 (1), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after the giant impact stage. Geochemically, highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets and the Moon suggest that a total of about 0.01 M sub([+ in circle]) of chondritic material was delivered as "late veneer" by planetesimals to the terrestrial planets after the end of giant impacts. Here, we combine these two independent lines of evidence for a leftover population of planetesimals and show that: (1) a residual population of small planetesimals containing 0.01 M sub([+ in circle]) is able to damp the high eccentricities and inclinations of the terrestrial planets after giant impacts to their observed values. (2) At the same time, this planetesimal population can account for the observed relative amounts of late veneer added to the Earth, Moon, and Mars provided that the majority of the accreted late veneer was delivered by small planetesimals with radii [ |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/752/1/8 |