DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE

We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-06, Vol.752 (1), p.1-17
Hauptverfasser: KELLY, Brandon C, SHETTY, Rahul, STUTZ, Amelia M, KAUFFMANN, Jens, GOODMAN, Alyssa A, LAUNHARDT, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 752
creator KELLY, Brandon C
SHETTY, Rahul
STUTZ, Amelia M
KAUFFMANN, Jens
GOODMAN, Alyssa A
LAUNHARDT, Ralf
description We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta . The traditional non-hierarchical approaches, typically based on chi super(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi super(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi super(2) fits, which indicate a T- beta anti-correlation from the same data set. Additionally, in comparison to the chi super(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values.
doi_str_mv 10.1088/0004-637X/752/1/55
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22037090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709776409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c6fe966f69079ec8c5dfec363ea8ab12eabc8c83cae48af78342bb2b71bf648c3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EEkPLH2BlCSGxCeNH_Ai7NOOZWB1lSuKR6MpyjCOCppM2Thf8exJN1TWrq3vvd87iHAA-YfQNIynXCKE04VT8XAtG1njN2BuwwozKJKVMvAWrV-A9-BDjn2UlWbYCw-bYGNjcqcLU-R6qStW7e7jRjan1zdHoQ9VAXUFTKqjqHB62sFR1U5RqD_NqA-_2eVXcfoc5LPX8r4tSF7PNTX6vGp1XyVYbo6sdNKooK_3jqK7Bu86dYvj4Mq_AcatMUSb7w26RJp4KPCWedyHjvOMZElnw0rNfXfCU0-CkazEJrp2PknoXUuk6IWlK2pa0ArcdT6WnV-DzxXeIU2-j76fgf_vhfA5-soQgKlCGZurrhXoch6fnECf70EcfTid3DsNztHimhOApyv4HxQxhyvmMkgvqxyHGMXT2cewf3PjXYmSXuuwSv13asHNdFlvGZtGXF38XvTt1ozv7Pr4qCacozXhK_wEbD4r_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701501366</pqid></control><display><type>article</type><title>DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>KELLY, Brandon C ; SHETTY, Rahul ; STUTZ, Amelia M ; KAUFFMANN, Jens ; GOODMAN, Alyssa A ; LAUNHARDT, Ralf</creator><creatorcontrib>KELLY, Brandon C ; SHETTY, Rahul ; STUTZ, Amelia M ; KAUFFMANN, Jens ; GOODMAN, Alyssa A ; LAUNHARDT, Ralf</creatorcontrib><description>We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta . The traditional non-hierarchical approaches, typically based on chi super(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi super(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi super(2) fits, which indicate a T- beta anti-correlation from the same data set. Additionally, in comparison to the chi super(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/752/1/55</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Bayesian analysis ; CALIBRATION ; COMPARATIVE EVALUATIONS ; Correlation ; CORRELATIONS ; COSMIC DUST ; DATA ANALYSIS ; Dust ; Earth, ocean, space ; ENERGY SPECTRA ; Exact sciences and technology ; FAR INFRARED RADIATION ; Ground-based observation ; INDEXES ; MASS ; MINIMIZATION ; NOISE ; PHOTON EMISSION ; Spectra ; Spectral energy distribution ; STARS ; Uncertainty</subject><ispartof>The Astrophysical journal, 2012-06, Vol.752 (1), p.1-17</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c6fe966f69079ec8c5dfec363ea8ab12eabc8c83cae48af78342bb2b71bf648c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26304964$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22037090$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KELLY, Brandon C</creatorcontrib><creatorcontrib>SHETTY, Rahul</creatorcontrib><creatorcontrib>STUTZ, Amelia M</creatorcontrib><creatorcontrib>KAUFFMANN, Jens</creatorcontrib><creatorcontrib>GOODMAN, Alyssa A</creatorcontrib><creatorcontrib>LAUNHARDT, Ralf</creatorcontrib><title>DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE</title><title>The Astrophysical journal</title><description>We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta . The traditional non-hierarchical approaches, typically based on chi super(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi super(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi super(2) fits, which indicate a T- beta anti-correlation from the same data set. Additionally, in comparison to the chi super(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values.</description><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Bayesian analysis</subject><subject>CALIBRATION</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Correlation</subject><subject>CORRELATIONS</subject><subject>COSMIC DUST</subject><subject>DATA ANALYSIS</subject><subject>Dust</subject><subject>Earth, ocean, space</subject><subject>ENERGY SPECTRA</subject><subject>Exact sciences and technology</subject><subject>FAR INFRARED RADIATION</subject><subject>Ground-based observation</subject><subject>INDEXES</subject><subject>MASS</subject><subject>MINIMIZATION</subject><subject>NOISE</subject><subject>PHOTON EMISSION</subject><subject>Spectra</subject><subject>Spectral energy distribution</subject><subject>STARS</subject><subject>Uncertainty</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EEkPLH2BlCSGxCeNH_Ai7NOOZWB1lSuKR6MpyjCOCppM2Thf8exJN1TWrq3vvd87iHAA-YfQNIynXCKE04VT8XAtG1njN2BuwwozKJKVMvAWrV-A9-BDjn2UlWbYCw-bYGNjcqcLU-R6qStW7e7jRjan1zdHoQ9VAXUFTKqjqHB62sFR1U5RqD_NqA-_2eVXcfoc5LPX8r4tSF7PNTX6vGp1XyVYbo6sdNKooK_3jqK7Bu86dYvj4Mq_AcatMUSb7w26RJp4KPCWedyHjvOMZElnw0rNfXfCU0-CkazEJrp2PknoXUuk6IWlK2pa0ArcdT6WnV-DzxXeIU2-j76fgf_vhfA5-soQgKlCGZurrhXoch6fnECf70EcfTid3DsNztHimhOApyv4HxQxhyvmMkgvqxyHGMXT2cewf3PjXYmSXuuwSv13asHNdFlvGZtGXF38XvTt1ozv7Pr4qCacozXhK_wEbD4r_</recordid><startdate>20120610</startdate><enddate>20120610</enddate><creator>KELLY, Brandon C</creator><creator>SHETTY, Rahul</creator><creator>STUTZ, Amelia M</creator><creator>KAUFFMANN, Jens</creator><creator>GOODMAN, Alyssa A</creator><creator>LAUNHARDT, Ralf</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20120610</creationdate><title>DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE</title><author>KELLY, Brandon C ; SHETTY, Rahul ; STUTZ, Amelia M ; KAUFFMANN, Jens ; GOODMAN, Alyssa A ; LAUNHARDT, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c6fe966f69079ec8c5dfec363ea8ab12eabc8c83cae48af78342bb2b71bf648c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Bayesian analysis</topic><topic>CALIBRATION</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Correlation</topic><topic>CORRELATIONS</topic><topic>COSMIC DUST</topic><topic>DATA ANALYSIS</topic><topic>Dust</topic><topic>Earth, ocean, space</topic><topic>ENERGY SPECTRA</topic><topic>Exact sciences and technology</topic><topic>FAR INFRARED RADIATION</topic><topic>Ground-based observation</topic><topic>INDEXES</topic><topic>MASS</topic><topic>MINIMIZATION</topic><topic>NOISE</topic><topic>PHOTON EMISSION</topic><topic>Spectra</topic><topic>Spectral energy distribution</topic><topic>STARS</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLY, Brandon C</creatorcontrib><creatorcontrib>SHETTY, Rahul</creatorcontrib><creatorcontrib>STUTZ, Amelia M</creatorcontrib><creatorcontrib>KAUFFMANN, Jens</creatorcontrib><creatorcontrib>GOODMAN, Alyssa A</creatorcontrib><creatorcontrib>LAUNHARDT, Ralf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLY, Brandon C</au><au>SHETTY, Rahul</au><au>STUTZ, Amelia M</au><au>KAUFFMANN, Jens</au><au>GOODMAN, Alyssa A</au><au>LAUNHARDT, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-06-10</date><risdate>2012</risdate><volume>752</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta . The traditional non-hierarchical approaches, typically based on chi super(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi super(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi super(2) fits, which indicate a T- beta anti-correlation from the same data set. Additionally, in comparison to the chi super(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/752/1/55</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2012-06, Vol.752 (1), p.1-17
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22037090
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Bayesian analysis
CALIBRATION
COMPARATIVE EVALUATIONS
Correlation
CORRELATIONS
COSMIC DUST
DATA ANALYSIS
Dust
Earth, ocean, space
ENERGY SPECTRA
Exact sciences and technology
FAR INFRARED RADIATION
Ground-based observation
INDEXES
MASS
MINIMIZATION
NOISE
PHOTON EMISSION
Spectra
Spectral energy distribution
STARS
Uncertainty
title DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DUST%20SPECTRAL%20ENERGY%20DISTRIBUTIONS%20IN%20THE%20ERA%20OF%20HERSCHEL%20AND%20PLANCK:%20A%20HIERARCHICAL%20BAYESIAN-FITTING%20TECHNIQUE&rft.jtitle=The%20Astrophysical%20journal&rft.au=KELLY,%20Brandon%20C&rft.date=2012-06-10&rft.volume=752&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/752/1/55&rft_dat=%3Cproquest_osti_%3E1709776409%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701501366&rft_id=info:pmid/&rfr_iscdi=true