DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE

We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-06, Vol.752 (1), p.1-17
Hauptverfasser: KELLY, Brandon C, SHETTY, Rahul, STUTZ, Amelia M, KAUFFMANN, Jens, GOODMAN, Alyssa A, LAUNHARDT, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta . The traditional non-hierarchical approaches, typically based on chi super(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi super(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi super(2) fits, which indicate a T- beta anti-correlation from the same data set. Additionally, in comparison to the chi super(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/752/1/55