THE REMARKABLE HIGH PRESSURE OF THE LOCAL LEO COLD CLOUD

Using the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope, we have obtained high-resolution ultraviolet spectra of the C I absorption toward two stars behind the Local Leo Cold Cloud (LLCC). At a distance ( approximately 20 pc) that places it well inside the Local Bub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-06, Vol.752 (2), p.1-15
Hauptverfasser: Meyer, David M, Lauroesch, J T, Peek, J E G, Heiles, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope, we have obtained high-resolution ultraviolet spectra of the C I absorption toward two stars behind the Local Leo Cold Cloud (LLCC). At a distance ( approximately 20 pc) that places it well inside the Local Bubble, the LLCC is the nearest example of the coldest known (T approximately 20 K) diffuse interstellar clouds. The STIS measurements of the C I fine-structure excitation toward HD 85259 and HD 83023 indicate that the thermal gas pressure of the LLCC is much greater than that of the warm clouds in the Local Bubble. The mean LLCC pressure measured toward these two stars (60,000 cm super(-3) K) implies an H I density of approximately 3000 cm super(-3) and a cloud thickness of approximately 200 AU at the 20 K cloud temperature. Such a thin, cold, dense structure could arise at the collision interface between converging flows of warm gas. However, the measured LLCC pressure is appreciably higher than that expected in the colliding-cloud interpretation given the velocity and column density constraints on warm clouds in the HD 85259 and HD 83023 sightlines. Additional STIS measurements of the Zn II, Ni II, and Cr II column densities toward HD 85259 indicate that the LLCC has a modest "warm cloud" dust depletion pattern consistent with its low dust-to-gas ratio determined from H I 21 cm and 100 mu m observations. In support of the inferred sheet-like geometry for the LLCC, a multi-epoch comparison of the Na I absorption toward a high-proper-motion background star reveals a 40% column density variation indicative of LLCC Na I structure on a scale of approximately 50 AU.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/752/2/119