ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST

All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2012-08, Vol.144 (2), p.1-8
Hauptverfasser: Adams, E R, Ciardi, D R, Dupree, A K, Gautier, T N, Kulesa, C, McCarthy, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0''.1 from the target star. Images were taken in the near-infrared (J and K s bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6" separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2" of the target star; six companions (7%) are closer than 075. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.
ISSN:0004-6256
1538-3881
1538-3881
DOI:10.1088/0004-6256/144/2/42