THE ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTIONS OF QUIESCENT BLACK HOLES AND NEUTRON STARS
We present Hubble Space Telescope/Advanced Camera for Surveys ultraviolet photometry of three quiescent black hole X-ray transients, X-ray Nova Muscae 1991 (GU Mus), GRO J0422+32 (V518 Per), and X-ray Nova Vel 1993 (MM Vel), and one neutron star system, Aql X-1. These are the first quiescent UV dete...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2012-04, Vol.749 (1), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present Hubble Space Telescope/Advanced Camera for Surveys ultraviolet photometry of three quiescent black hole X-ray transients, X-ray Nova Muscae 1991 (GU Mus), GRO J0422+32 (V518 Per), and X-ray Nova Vel 1993 (MM Vel), and one neutron star system, Aql X-1. These are the first quiescent UV detections of these objects. All are detected at a much higher level than expected from their companion stars alone and are significant detections of the accretion flow. Three of the four UV excesses can be characterized by a blackbody of temperature 5000-13, 000 K, hotter than expected for the quiescent outer disk. A good fit could not be found for MM Vel. The source of the blackbody-like emission is most likely a heated region of the inner disk. Contrary to initial indications from spectroscopy, there does not appear to be a systematic difference in the UV luminosity or spectral shape between black holes and neutron star systems. However, combining our new data with earlier spectroscopy and published X-ray luminosities, there is a significant difference in the X-ray to UV flux ratios, with the neutron stars exhibiting L sub(X)/L sub(UV) about 10 times higher than the black hole systems. This is consistent with earlier comparisons based on estimating non-stellar optical light, but since both bandpasses we use are expected to be dominated by accretion light, we present a cleaner comparison. This suggests that the difference in X-ray luminosities cannot simply reflect differences in quiescent accretion rates and so the UV/X-ray ratio is a more robust discriminator between the black hole and neutron star populations than the comparison of X-ray luminosities alone. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637x/749/1/3 |