Controllable synthesis of SnO{sub 2} nanowires and nanobelts by Ga catalysts
We report the morphology control of one-dimensional (1D) SnO{sub 2} nanostructures by Ga catalysts using thermal evaporation method. Gallium (Ga), either from decomposition of GaN powder or from Ga metal, is adopted as a catalyst for the growth of long SnO{sub 2} nanowires and nanobelts. At similar...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2012-07, Vol.191 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the morphology control of one-dimensional (1D) SnO{sub 2} nanostructures by Ga catalysts using thermal evaporation method. Gallium (Ga), either from decomposition of GaN powder or from Ga metal, is adopted as a catalyst for the growth of long SnO{sub 2} nanowires and nanobelts. At similar experimental conditions, quantities of nanobelts are formed instead of nanowires when the temperature and reaction time are increased. Such approach enables us to synthesize various morphologies of SnO{sub 2} nanobelts with different side facets. Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time, which is attributed to the large amount of oxygen vacancies introduced in the nanobelts by the Ga catalysts. - Graphical abstract: Morphology control of one-dimensional SnO{sub 2} nanostructures are realized via a thermal evaporation method. Novel nanobelts along [0 0 1] direction having high energy side facets were fabricated for the first time. Highlights: Black-Right-Pointing-Pointer Morphology control of one-dimensional SnO{sub 2} nanostructures are realized by Ga catalysts using thermal evaporation method. Black-Right-Pointing-Pointer Oxygen vacancies influenced the growth directions in order to neutralize thermodynamic instability. Black-Right-Pointing-Pointer Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time. |
---|---|
ISSN: | 0022-4596 1095-726X |
DOI: | 10.1016/J.JSSC.2012.03.001 |