X-ray Thomson scattering measurements from shock-compressed deuterium

X-ray Thomson scattering has recently been shown to be an effective method of diagnosing a variety of high energy density plasma conditions. We apply this powerful technique to the widely studied problem of shock-compressed liquid deuterium. The behavior of deuterium under extreme conditions has rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Davis, P., Doeppner, T., Rygg, J. R., Fortmann, C., Unites, W., Salmonson, J., Collins, G. W., Landen, O. L., Falcone, R. W., Glenzer, S. H., Lawrence Livermore National Laboratory. Livermore, CA 94551, University of California, Berkeley. Berkeley, CA, 94720
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray Thomson scattering has recently been shown to be an effective method of diagnosing a variety of high energy density plasma conditions. We apply this powerful technique to the widely studied problem of shock-compressed liquid deuterium. The behavior of deuterium under extreme conditions has received considerable attention due to its central role in models of giant planets and the importance of the high-pressure insulator-metal transition. We have used spectrally resolved x-ray scattering from electron-plasma waves to perform microscopic observations of ionization during compression. In these experiments, a single shock was launched in cryogenic deuterium reaching compressions of 3x. The 2 keV Ly-{alpha} line in silicon was used as an x-ray source in a forward scattering geometry. In addition to elastic scattering from tightly bound electrons, this low probe energy accessed the collective plasmon oscillations of delocalized electrons. Inelastic scattering from the plasmons allowed accurate measurements of the free electron density through the spectral position of the resonance and provided an estimate of the temperature through its ratio with the elastic feature. Combined with velocity interferometry from the reflective shock front, this lead to a direct determination of the ionization state. We compare the measured ionization conditions with computational models. Additionally, we discuss the possibility of using this technique to determine electrical conductivity and to directly observe pressure-induced molecular dissociation along the Hugoniot.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4707855