SYMPATHETIC FILAMENT ERUPTIONS CONNECTED BY CORONAL DIMMINGS

We present for the first time detailed observations of three successive, interdependent filament eruptions that occurred one by one within 5 hr from different locations beyond the range of a single active region. The first eruption was observed from an active region and was associated with a coronal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2011-09, Vol.738 (2)
Hauptverfasser: Jiang Yunchun, Yang Jiayan, Hong Junchao, Bi Yi, Zheng Ruisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present for the first time detailed observations of three successive, interdependent filament eruptions that occurred one by one within 5 hr from different locations beyond the range of a single active region. The first eruption was observed from an active region and was associated with a coronal mass ejection (CME), during which diffuse and complex coronal dimmings formed, largely extending to the two other filaments located in quiet-Sun regions. Then, both quiescent filaments consecutively underwent the second and third eruptions, while the nearby dimmings were persistent. Comparing the result of a derived coronal magnetic configuration, the magnetic connectivity between the dimmings suggested that they were caused by the joint effect of simple expansion of overlying loop systems forced by the first eruption, as well as by its erupting field interacting or reconnecting with the surrounding magnetic structures. Note that the dimming process in the first eruption indicated a weakening and partial removal of an overlying magnetic field constraint on the two other filaments, and thus one can physically connect these eruptions as sympathetic. It appears that the peculiar magnetic field configuration in our event was largely favorable to the occurrence of sympathetic filament eruptions. Because coronal dimmings are frequent and common phenomena in solar eruptions, especially in CME events, it is very likely that they represent a universal agent that can link consecutive eruptions nearby with sympathetic eruptions.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/738/2/179;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)