Viscosity and scale invariance in the unitary Fermi gas

We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2011-03, Vol.326 (3), p.770-796
Hauptverfasser: Enss, Tilman, Haussmann, Rudolf, Zwerger, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov–Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity η( ω) exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of 0.5 T F , thus invalidating a quasiparticle description. The ratio η/ s between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound ℏ/(4 πk B ) by a factor of about seven.
ISSN:0003-4916
1096-035X
DOI:10.1016/j.aop.2010.10.002