Chaos in fermionic many-body systems and the metal-insulator transition

We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3)
Hauptverfasser: Papenbrock, T., Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Pluhar, Z., Tithof, J., Weidenmueller, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 83
creator Papenbrock, T.
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Pluhar, Z.
Tithof, J.
Weidenmueller, H. A.
description We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.
doi_str_mv 10.1103/PHYSREVE.83.031130
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21560067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21560067</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_215600673</originalsourceid><addsrcrecordid>eNqNi7FqwzAUAEVoIGnSH-gkyCz3ya-y3Tm4yRjaEsgUFEXGKpYEfq-D_z4t9AMy3Q13QjxrKLQGfDnsT58f7bEtGiwAtUaYiaU2BlSJdfXw5_imsDZmIR6JvgGwxOZ1KXbb3maSIcnOjzHkFJyMNk3qkq-TpInYR5I2XSX3XkbPdlAh0c9gOY-SR5so8O-2FvPODuSf_rkSm_f2a7tXmTicyQX2rnc5Je_4XGpTAVQ13lfdAEf-Q8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><source>American Physical Society Journals</source><creator>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</creator><creatorcontrib>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</creatorcontrib><description>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PHYSREVE.83.031130</identifier><language>eng</language><publisher>United States</publisher><subject>CHAOS THEORY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELECTRICAL EQUIPMENT ; ELECTRICAL INSULATORS ; ELEMENTS ; FERMIONS ; FLUCTUATIONS ; INTERACTIONS ; MANY-BODY PROBLEM ; MATHEMATICS ; MATRICES ; MEAN-FIELD THEORY ; METALS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; RANDOMNESS ; SIMULATION ; SPECTRA ; VARIATIONS</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21560067$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Papenbrock, T.</creatorcontrib><creatorcontrib>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creatorcontrib><creatorcontrib>Pluhar, Z.</creatorcontrib><creatorcontrib>Tithof, J.</creatorcontrib><creatorcontrib>Weidenmueller, H. A.</creatorcontrib><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><description>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</description><subject>CHAOS THEORY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTRICAL INSULATORS</subject><subject>ELEMENTS</subject><subject>FERMIONS</subject><subject>FLUCTUATIONS</subject><subject>INTERACTIONS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>MEAN-FIELD THEORY</subject><subject>METALS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>RANDOMNESS</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>VARIATIONS</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNi7FqwzAUAEVoIGnSH-gkyCz3ya-y3Tm4yRjaEsgUFEXGKpYEfq-D_z4t9AMy3Q13QjxrKLQGfDnsT58f7bEtGiwAtUaYiaU2BlSJdfXw5_imsDZmIR6JvgGwxOZ1KXbb3maSIcnOjzHkFJyMNk3qkq-TpInYR5I2XSX3XkbPdlAh0c9gOY-SR5so8O-2FvPODuSf_rkSm_f2a7tXmTicyQX2rnc5Je_4XGpTAVQ13lfdAEf-Q8o</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Papenbrock, T.</creator><creator>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creator><creator>Pluhar, Z.</creator><creator>Tithof, J.</creator><creator>Weidenmueller, H. A.</creator><scope>OTOTI</scope></search><sort><creationdate>20110315</creationdate><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><author>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_215600673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CHAOS THEORY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTRICAL INSULATORS</topic><topic>ELEMENTS</topic><topic>FERMIONS</topic><topic>FLUCTUATIONS</topic><topic>INTERACTIONS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>MEAN-FIELD THEORY</topic><topic>METALS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>RANDOMNESS</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>VARIATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Papenbrock, T.</creatorcontrib><creatorcontrib>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creatorcontrib><creatorcontrib>Pluhar, Z.</creatorcontrib><creatorcontrib>Tithof, J.</creatorcontrib><creatorcontrib>Weidenmueller, H. A.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papenbrock, T.</au><au>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</au><au>Pluhar, Z.</au><au>Tithof, J.</au><au>Weidenmueller, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos in fermionic many-body systems and the metal-insulator transition</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><date>2011-03-15</date><risdate>2011</risdate><volume>83</volume><issue>3</issue><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</abstract><cop>United States</cop><doi>10.1103/PHYSREVE.83.031130</doi></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3)
issn 1539-3755
1550-2376
language eng
recordid cdi_osti_scitechconnect_21560067
source American Physical Society Journals
subjects CHAOS THEORY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
ELECTRICAL EQUIPMENT
ELECTRICAL INSULATORS
ELEMENTS
FERMIONS
FLUCTUATIONS
INTERACTIONS
MANY-BODY PROBLEM
MATHEMATICS
MATRICES
MEAN-FIELD THEORY
METALS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
RANDOMNESS
SIMULATION
SPECTRA
VARIATIONS
title Chaos in fermionic many-body systems and the metal-insulator transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20in%20fermionic%20many-body%20systems%20and%20the%20metal-insulator%20transition&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Papenbrock,%20T.&rft.date=2011-03-15&rft.volume=83&rft.issue=3&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PHYSREVE.83.031130&rft_dat=%3Costi%3E21560067%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true