Chaos in fermionic many-body systems and the metal-insulator transition
We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ense...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 83 |
creator | Papenbrock, T. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Pluhar, Z. Tithof, J. Weidenmueller, H. A. |
description | We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE. |
doi_str_mv | 10.1103/PHYSREVE.83.031130 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21560067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21560067</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_215600673</originalsourceid><addsrcrecordid>eNqNi7FqwzAUAEVoIGnSH-gkyCz3ya-y3Tm4yRjaEsgUFEXGKpYEfq-D_z4t9AMy3Q13QjxrKLQGfDnsT58f7bEtGiwAtUaYiaU2BlSJdfXw5_imsDZmIR6JvgGwxOZ1KXbb3maSIcnOjzHkFJyMNk3qkq-TpInYR5I2XSX3XkbPdlAh0c9gOY-SR5so8O-2FvPODuSf_rkSm_f2a7tXmTicyQX2rnc5Je_4XGpTAVQ13lfdAEf-Q8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><source>American Physical Society Journals</source><creator>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</creator><creatorcontrib>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</creatorcontrib><description>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PHYSREVE.83.031130</identifier><language>eng</language><publisher>United States</publisher><subject>CHAOS THEORY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELECTRICAL EQUIPMENT ; ELECTRICAL INSULATORS ; ELEMENTS ; FERMIONS ; FLUCTUATIONS ; INTERACTIONS ; MANY-BODY PROBLEM ; MATHEMATICS ; MATRICES ; MEAN-FIELD THEORY ; METALS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; RANDOMNESS ; SIMULATION ; SPECTRA ; VARIATIONS</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21560067$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Papenbrock, T.</creatorcontrib><creatorcontrib>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creatorcontrib><creatorcontrib>Pluhar, Z.</creatorcontrib><creatorcontrib>Tithof, J.</creatorcontrib><creatorcontrib>Weidenmueller, H. A.</creatorcontrib><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><description>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</description><subject>CHAOS THEORY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELECTRICAL EQUIPMENT</subject><subject>ELECTRICAL INSULATORS</subject><subject>ELEMENTS</subject><subject>FERMIONS</subject><subject>FLUCTUATIONS</subject><subject>INTERACTIONS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>MEAN-FIELD THEORY</subject><subject>METALS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>RANDOMNESS</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>VARIATIONS</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNi7FqwzAUAEVoIGnSH-gkyCz3ya-y3Tm4yRjaEsgUFEXGKpYEfq-D_z4t9AMy3Q13QjxrKLQGfDnsT58f7bEtGiwAtUaYiaU2BlSJdfXw5_imsDZmIR6JvgGwxOZ1KXbb3maSIcnOjzHkFJyMNk3qkq-TpInYR5I2XSX3XkbPdlAh0c9gOY-SR5so8O-2FvPODuSf_rkSm_f2a7tXmTicyQX2rnc5Je_4XGpTAVQ13lfdAEf-Q8o</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Papenbrock, T.</creator><creator>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creator><creator>Pluhar, Z.</creator><creator>Tithof, J.</creator><creator>Weidenmueller, H. A.</creator><scope>OTOTI</scope></search><sort><creationdate>20110315</creationdate><title>Chaos in fermionic many-body systems and the metal-insulator transition</title><author>Papenbrock, T. ; Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ; Pluhar, Z. ; Tithof, J. ; Weidenmueller, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_215600673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CHAOS THEORY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELECTRICAL EQUIPMENT</topic><topic>ELECTRICAL INSULATORS</topic><topic>ELEMENTS</topic><topic>FERMIONS</topic><topic>FLUCTUATIONS</topic><topic>INTERACTIONS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>MEAN-FIELD THEORY</topic><topic>METALS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>RANDOMNESS</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>VARIATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Papenbrock, T.</creatorcontrib><creatorcontrib>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</creatorcontrib><creatorcontrib>Pluhar, Z.</creatorcontrib><creatorcontrib>Tithof, J.</creatorcontrib><creatorcontrib>Weidenmueller, H. A.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papenbrock, T.</au><au>Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831</au><au>Pluhar, Z.</au><au>Tithof, J.</au><au>Weidenmueller, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos in fermionic many-body systems and the metal-insulator transition</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><date>2011-03-15</date><risdate>2011</risdate><volume>83</volume><issue>3</issue><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.</abstract><cop>United States</cop><doi>10.1103/PHYSREVE.83.031130</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3) |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_osti_scitechconnect_21560067 |
source | American Physical Society Journals |
subjects | CHAOS THEORY CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ELECTRICAL EQUIPMENT ELECTRICAL INSULATORS ELEMENTS FERMIONS FLUCTUATIONS INTERACTIONS MANY-BODY PROBLEM MATHEMATICS MATRICES MEAN-FIELD THEORY METALS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS RANDOMNESS SIMULATION SPECTRA VARIATIONS |
title | Chaos in fermionic many-body systems and the metal-insulator transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20in%20fermionic%20many-body%20systems%20and%20the%20metal-insulator%20transition&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Papenbrock,%20T.&rft.date=2011-03-15&rft.volume=83&rft.issue=3&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PHYSREVE.83.031130&rft_dat=%3Costi%3E21560067%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |