Chaos in fermionic many-body systems and the metal-insulator transition

We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3)
Hauptverfasser: Papenbrock, T., Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Pluhar, Z., Tithof, J., Weidenmueller, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.
ISSN:1539-3755
1550-2376
DOI:10.1103/PHYSREVE.83.031130