On plasma detachment in propulsive magnetic nozzles
Three detachment mechanisms proposed in the literature (via resistivity, via electron inertia, and via induced magnetic field) are analyzed with an axisymmetric model of the expansion of a small-beta, weakly collisional, near-sonic plasma in a diverging magnetic nozzle. The model assumes cold, parti...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2011-05, Vol.18 (5), p.053504-053504-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three detachment mechanisms proposed in the literature (via resistivity, via electron inertia, and via induced magnetic field) are analyzed with an axisymmetric model of the expansion of a small-beta, weakly collisional, near-sonic plasma in a diverging magnetic nozzle. The model assumes cold, partially magnetized ions and hot, isothermal, fully magnetized electrons. Different conditions of the plasma beam at the nozzle throat are considered. A central feature is that a positive thrust gain in the nozzle of a plasma thruster is intimately related to the azimuthal current in the plasma being diamagnetic. Then, and contrary to existing expectations, the three aforementioned detachment mechanisms are divergent, that is, the plasma beam diverges outwards of the guide nozzle, further hindering its axial expansion and the thrust efficiency. The rate of divergent detachment is quantified for the small-parameter range of the three mechanisms. Alternative mechanisms for a convergent detachment of the plasma beam are suggested. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.3589268 |