QED with a spherical mirror
We investigate the quantum electrodynamic (QED) properties of an atomic electron close to the focus of a spherical mirror. We first show that the spontaneous emission and excited-state level shift of the atom can be fully suppressed with mirror-atom distances of many wavelengths. A three-dimensional...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-12, Vol.82 (6), Article 063812 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the quantum electrodynamic (QED) properties of an atomic electron close to the focus of a spherical mirror. We first show that the spontaneous emission and excited-state level shift of the atom can be fully suppressed with mirror-atom distances of many wavelengths. A three-dimensional theory predicts that the spectral density of vacuum fluctuations can indeed vanish within a volume {lambda}{sup 3} around the atom, with the use of a far-distant mirror covering only half of the atomic emission solid angle. The modification of these QED atomic properties is also computed as a function of the mirror size, and large effects are found for only moderate numerical apertures. We also evaluate the long-distance ground-state energy shift (Casimir-Polder shift) and find that it scales as ({lambda}/R){sup 2} at the focus of a hemispherical mirror of radius R, as opposed to the well-known ({lambda}/R){sup 4} scaling law for an atom at a distance R from an infinite plane mirror. Our results are relevant for investigations of QED effects as well as free-space coupling to single atoms using high-numerical-aperture lenses. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.82.063812 |