Use of Xenon Difluoride to Clean Hazardous By-Products in Ion Implanter Source Housings, Turbo Pumps, and Fore-Lines
This paper describes the use of xenon difluoride to clean deposits in the source housing, source turbo pump, and source turbo pump fore-line of ion implanters. Xenon difluoride has previously been shown to be effective in increasing the lifetime of the ion source1,2 and this paper presents an extens...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2010-01, Vol.1321 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the use of xenon difluoride to clean deposits in the source housing, source turbo pump, and source turbo pump fore-line of ion implanters. Xenon difluoride has previously been shown to be effective in increasing the lifetime of the ion source1,2 and this paper presents an extension of the technology to other areas within the tool. Process by-products that are deposited in the source housing, turbo pump, and turbo pump fore-line can not only pose productivity issues, in the case of coatings on insulators, but can also be flammable and toxic in the case of deposits formed within the turbo pump and fore-line. The results presented in this paper detail the initial successful examples of using xenon difluoride to clean these deposits. ATMI has shown that xenon difluoride is capable of cleaning an insulator in an ion implanter. Typically during use an insulator will become increasingly coated with deposits that could lead to productivity problems. By introducing xenon difluoride into the source housing the insulator residues were effectively cleaned in-situ, thereby extending the maintenance interval and resulting in significant consumable savings. Similar deposits that form in the turbo pump and fore-line could not only lead to production problems due to turbo pump failure or fore-line build-up, but pose significant health risks during the ex-situ cleaning process. Through internal testing ATMI has shown that xenon difluoride is able to clean phosphorus and germanium deposits located within a turbo pump. Additionally, testing has demonstrated that the turbo pump fore-line can be cleaned in-situ without the need to remove these components, thereby virtually eliminating the possibility of fires. The cleaning reaction progress and by-products were monitored using FTIR spectrometry and thermocouples. In order to efficiently clean the source housing, turbo pump, and turbo pump fore-line xenon difluoride delivery must be optimized. This paper also details a hardware concept that maximizes xenon difluoride delivery and allows the clean to be done in a way that is viable for production ion implanters. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3548437 |