SEN Ultra-High Energy Implanter (UHE) Developed for Next Generation Image Sensors

The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suetsugu, Noriyuki, Tsukihara, Mitsukuni, Fuse, Genshu, Ueno, Kazuyoshi, Sugitani, Michiro
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boron is 5 MeV with beam current of 1p mu A. For phosphorus ions, the UHE can accelerate doubly charged ions up to 4.4 MeV with beam current of 0.35 mA and quadruply charged ions up to 8 MeV with beam current of 1 p mu A. The primary application of the UHE is the image sensor market where it is used to increase the depth of CCD photodiodes into the surface of the wafer and thereby permit higher pixel density for image sensors. The second purpose is to improve productivity for relatively high boron doses at energies around 3 MeV. In order to address certain CCD defects, the system includes a state-of-the-art beam profile controller which allows optimization of implant damage and micro-uniformity. The ULE is currently used in production of high-end CCD's.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.3548422