Properties and uncertainties of scalar field models of dark energy with barotropic equation of state

The dynamics of expansion and large scale structure formation in the multicomponent Universe with dark energy modeled by the minimally coupled scalar field with generalized linear barotropic equation of state are analyzed. It is shown that the past dynamics of expansion and future of the Universe -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 2010-11, Vol.82 (10), Article 103008
Hauptverfasser: Novosyadlyj, Bohdan, Sergijenko, Olga, Apunevych, Stepan, Pelykh, Volodymyr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of expansion and large scale structure formation in the multicomponent Universe with dark energy modeled by the minimally coupled scalar field with generalized linear barotropic equation of state are analyzed. It is shown that the past dynamics of expansion and future of the Universe - eternal accelerated expansion or turnaround and collapse - are completely defined by the current energy density of a scalar field and relation between its current and early equation of state parameters. The clustering properties of such models of dark energy and their imprints in the power spectrum of matter density perturbations depend on the same relation and, additionally, on the 'effective sound speed' of a scalar field, defined by its Lagrangian. It is concluded that such scalar fields with different values of these parameters are distinguishable in principle. This gives the possibility to constrain them by confronting the theoretical predictions with the corresponding observational data. For that we have used the 7-year Wilkinson Microwave Anisotropy Probe data on cosmic microwave background anisotropies, the Union2 data set on Supernovae Ia and the seventh data release of the Sloan Digital Sky Survey data on luminous red galaxies space distribution. Using the Markov Chain Monte Carlo technique the marginalized posterior and mean likelihood distributions are computed for the scalar fields with two different Lagrangians: Klein-Gordon and Dirac-Born-Infeld ones. The properties of such scalar field models of dark energy with best fitting parameters and uncertainties of their determination are also analyzed in the paper.
ISSN:1550-7998
0556-2821
1550-2368
1089-4918
DOI:10.1103/PhysRevD.82.103008