Nonlinear variants of the TR/BDF2 method for thermal radiative diffusion

We apply the Trapezoidal/BDF2 (TR/BDF2) temporal discretization scheme to nonlinear grey radiative diffusion. This is a scheme that is not well-known within the radiation transport community, but we show that it offers many desirable characteristics relative to other second-order schemes. Several no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2011-02, Vol.230 (4), p.1198-1214
Hauptverfasser: Edwards, Jarrod D., Morel, Jim E., Knoll, Dana A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply the Trapezoidal/BDF2 (TR/BDF2) temporal discretization scheme to nonlinear grey radiative diffusion. This is a scheme that is not well-known within the radiation transport community, but we show that it offers many desirable characteristics relative to other second-order schemes. Several nonlinear variants of the TR/BDF2 scheme are defined and computationally compared with the Crank–Nicholson scheme. It is found for our test problems that the most accurate TR/BDF2 schemes are those that are fully iterated to nonlinear convergence, but the most efficient TR/BDF2 scheme is one based upon a single Newton iteration. It is also shown that neglecting the contributions to the Jacobian matrix from the cross-sections, which is often done due to a lack of smooth interpolations for tabular cross-section data, has a significant impact upon efficiency.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2010.10.035