Structural study and physical properties of a new phosphate KCuFe(PO{sub 4}){sub 2}

Single crystals of a new phosphate KCuFe(PO{sub 4}){sub 2} have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P2{sub 1}/n and its parameters are: a=7.958(3) A, b=9.931(2) A,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2011-04, Vol.184 (4)
Hauptverfasser: Badri, Abdessalem, Hidouri, Mourad, Lopez, Maria Luisa, Pico, Carlos, Wattiaux, Alain, Ben Amara, Mongi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single crystals of a new phosphate KCuFe(PO{sub 4}){sub 2} have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P2{sub 1}/n and its parameters are: a=7.958(3) A, b=9.931(2) A, c=9.039(2) A, {beta}=115.59(3){sup o} and Z=4. Its structure consists of FeO{sub 6} octahedra sharing corners with Cu{sub 2}O{sub 8} units of edge-sharing CuO{sub 5} polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K{sup +} ions are located. The Moessbauer spectroscopy results confirm the exclusive presence of octahedral Fe{sup 3+} ions. The magnetic measurements show the compound to be antiferromagnetic with C{sub m}=5.71 emu K/mol and {theta}=-156.5 K. The derived experimental effective moment {mu}{sub ex}=6.76{mu}{sub B} is somewhat higher than the theoretical one of {mu}{sub th}=6.16{mu}{sub B}, calculated taking only into account the spin contribution for Fe{sup 3+} and Cu{sup 2+} cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations. -- Graphical abstract: A projection along the [101] direction of the structure showing the six-edged tunnels, occupied by the K{sup +} ions. Display Omitted Highlights: {yields} The reported structure is of a new type. {yields} The structural model is supported by a Moessbauer spectroscopy study. {yields} The magnetic susceptibility results are reported. {yields} The electrical properties are discussed.
ISSN:0022-4596
1095-726X
DOI:10.1016/j.jssc.2011.02.021