High-order harmonic propagation in gases within the discrete dipole approximation

We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-09, Vol.82 (3), Article 033432
Hauptverfasser: Hernández-García, C., Pérez-Hernández, J. A., Ramos, J., Jarque, E. Conejero, Roso, L., Plaja, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we avoid the numerical integration of the wave equation, as Maxwell's equations have an analytical solution for an elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with the relative position between the beam focus and the gas jet.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.82.033432