Strong-field photoionization of O{sub 2} at intermediate light intensity
We investigated by electron spectroscopy the strong-field multiphoton ionization of O{sub 2} molecules with ultrashort laser pulses in the intensity range between the multiphoton and tunneling regimes. The ionization proceeds by at least three different mechanisms, in addition to the eight- and nine...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-09, Vol.82 (3) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated by electron spectroscopy the strong-field multiphoton ionization of O{sub 2} molecules with ultrashort laser pulses in the intensity range between the multiphoton and tunneling regimes. The ionization proceeds by at least three different mechanisms, in addition to the eight- and nine-photon nonresonant pathways. Transient multiphoton resonances with vibrational Rydberg levels give rise to direct Freeman-type peaks with sublaser linewidth and spin-orbit splitting. Some resonance levels actually become populated and yield extremely narrow lines because of postpulse vibrational autoionization. When the lowest photon order resonance channel for the Rydberg states is closed, a third contribution becomes dominant with a main peak at 0.4 eV that shares its main properties with the recently discovered universal low-energy structure in the electron spectra of atoms and molecules [C. I. Blaga et al., Nat. Phys. 5, 335 (2009); W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)]. The variation of the Freeman resonance spectrum with the laser peak intensity is well correlated with the vibronic Franck-Condon factors for the overlap of the intermediate Rydberg state with the O{sub 2} ground state. Accordingly, the Freeman peaks could be unambiguously assigned to individual vibronic multiphoton resonances, and the disappearance of the Freeman resonances at a certain laser intensity could be explained. The population of the autoionizing Rydberg states could be assigned similarly to such vibronic resonances. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PHYSREVA.82.033431 |