The Coyote Universe. I. Precision Determination of the Nonlinear Matter Power Spectrum
Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study vari...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2010-05, Vol.715 (1), p.104-121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study various sources of computational error and methods to control them. By applying our methodology to a large suite of cosmological simulations we show that results for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k {approx} 1 h Mpc{sup -1}. The key components of these high accuracy simulations are precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae by an order of magnitude. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/715/1/104 |