Finite Hamiltonian systems: Linear transformations and aberrations
Finite Hamiltonian systems contain operators of position, momentum, and energy, having a finite number N of equally-spaced eigenvalues. Such systems are under the æis of the algebra su (2), and their phase space is a sphere. Rigid motions of this phase space form the group SU (2); overall phases com...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2010-03, Vol.73 (3), p.546-554 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finite Hamiltonian systems contain operators of position, momentum, and energy, having a finite number
N
of equally-spaced eigenvalues. Such systems are under the æis of the algebra
su
(2), and their phase space is a sphere. Rigid motions of this phase space form the group
SU
(2); overall phases complete this to
U
(2). But since
N
-point states can be subject to
U
(
N
) ⊃
U
(2) transformations, the rest of the generators will provide all
N
2
unitary transformations of the states, which appear as nonlinear transformations—aberrations—of the system phase space. They are built through the “finite quantization” of a classical optical system. |
---|---|
ISSN: | 1063-7788 1562-692X |
DOI: | 10.1134/S1063778810030191 |