Codimensions of generalized polynomial identities

It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q{sub +} and t element of Z{sub +} such that gc{sub n}(A){approx}Cn{sup t}d{sup n} as n{yields}{infinity}, where d=PI exp(A) element of Z{sub +}. Thus, Amitsur'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2010-02, Vol.201 (2), p.235-251
1. Verfasser: Gordienko, Aleksei S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q{sub +} and t element of Z{sub +} such that gc{sub n}(A){approx}Cn{sup t}d{sup n} as n{yields}{infinity}, where d=PI exp(A) element of Z{sub +}. Thus, Amitsur's and Regev's conjectures hold for the codimensions gc{sub n}(A) of the generalized polynomial identities. Bibliography: 6 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM2010v201n02ABEH004071