Codimensions of generalized polynomial identities
It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q{sub +} and t element of Z{sub +} such that gc{sub n}(A){approx}Cn{sup t}d{sup n} as n{yields}{infinity}, where d=PI exp(A) element of Z{sub +}. Thus, Amitsur'...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2010-02, Vol.201 (2), p.235-251 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q{sub +} and t element of Z{sub +} such that gc{sub n}(A){approx}Cn{sup t}d{sup n} as n{yields}{infinity}, where d=PI exp(A) element of Z{sub +}. Thus, Amitsur's and Regev's conjectures hold for the codimensions gc{sub n}(A) of the generalized polynomial identities. Bibliography: 6 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM2010v201n02ABEH004071 |